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Summary. The rigorous, collinear, canonical point transformation method 
with "hyper-hyperbolic" coordinates is extended to the infinite central mass 
problem in three dimensions. The initial transformation performed is 
(XA, YA, ZA, XC, YC, ZC) ~ (~b, 0, ~k, r, R, ~), where (~b, 0, ~k) are the Euler an- 
gles; r and R are the AB and BC interatomic distances, respectively, and ~ is 
the angle between r and R. A second transformation is then performed to 
(~b, 0, ~,, ~, r/, ~), where ~ is the reaction coordinate mimicking the reaction 
path, and ~/ is the vibrational coordinate of  the diatom. The transformed 
spaces are all one-to-one mappings from the original spaces, and thus do not 
have any three-to-one regions. The transformed momenta and Hamiltonians 
are derived, and are Hermitian in their respective transformed spaces. 

Key words: Reactive s c a t t e r i n g -  Reaction c o o r d i n a t e s -  Molecular scat- 
tering 

1. Introduction 

In recent years, with the advent of  and access to supercomputers, there has been 
a resurgence of  theoretical consideration of  three-dimensional reactive processes. 
Recent calculations have employed Aa2 basis sets and non-local interactions 
which couple different arrangement channels [ 1, 2], hyperspherical coordinates 
[3, 4], matching surfaces [5], and natural collision coordinates with matching 
surfaces [6, 7]. The present work is concerned with an attempt to implement the 
reaction path concept [8] in three-dimensional (3D) quantum mechanical calcula- 
tions of  atom-diatom reactive scattering. The stationary phase approximation to 
the path integral formulation of  quantum mechanics [9] indicates that the largest 
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contributions to the transition amplitude arise in the vicinity of classical orbits. 
Consequently, a coordinate system based on the classical reaction path might be 
expected to be computationally advantageous. 

Motion in terms of the reaction coordinate may be considered to be a large 
amplitude excursion ~/orresponding to the imaginary frequency at the potential 
saddle point [10]. For the infinite central mass case considered in the present 
work, modified heliocentric coordinates [11] might be expected to be useful, but 
their utility is limited by the magnitude and complexity of their induced changes 
in the form of the potential. Orthogonal relative coordinates [12] have, in 
common with the body-fixed coordinates of the present work, the properties that 
the "radial coordinates" are orthogonal to each other and all of the angular 
coordinates, but the body-fixed angular coordinate is not orthogonal to the Euler 
angles. Both of these systems, however, have been advocated for bound state 
problems rather than scattering problems. 

The reaction path, r is the path of steepest descent in mass weighted 
coordinates extending from the potential saddle point to the reactant and 
product valleys. As described by Light [13], the reaction curve, ~c, is an ad hoc 
curve chosen to mimic the reaction path, ~p. The curve is parameterized in such 
a manner that, as the reaction proceeds, the reaction coordinate, 4, goes from 
- ~  to + oo. The asymptotic reactant and product regions are thus described by 
the same Hamiltonian, thereby avoiding (i) the "scrambling" of continuum and 
bound coordinates which otherwise occurs in the reaction region, and (ii) 
projective procedures, which are sometimes used in perturbative rate methods 
[14]. As in activated complex theory, the reaction coordinate concept allows 
visualization of the actual reaction path in terms of a single coordinate, ~. 
In addition, dynamical analysis in the reaction coordinate picture, which has 
been shown to reduce to activated complex theory in the relevant statistical 
limit [15], easily incorporates the intuitive notions concerning the location and 
shape of energy barriers, which are powerful concepts in the absolute rate theory 
formulation. 

In an earlier paper [16] on this method, henceforth referred to as I, the 
collinear triatomic collision problem was considered, and a family of "hyper- 
hyperboloids" comprising an orthogonal set of coordinates was found. One of 
the coordinates, r mimics the reaction path, ~p; the other coordinate, ~/, being 
orthogonal to ~, describes, in the asymptotic regions, the vibrational states of 
both the reactant and the product systems. The transformation employed was 
simply a point transformation, and thus no mathematical ambiguities, or physi- 
cally meaningless artifacts were used. Because the point transformation is global, 
the method was well able to handle the "centrifugal" force, or "bobsled" effects 
[17] in reactive or nonreactive collisions, wherein the point representing the 
average position of the system leaves the reaction path because of its curvature. 
This effect is extremely important because the departure of the reaction from the 
reaction path describes the vibrational excitation of the system (both reactant 
and product) and thus is essential in obtaining the propensity rules [15, 18] for 
the reaction. In previous methods, following the earlier work of Marcus [ 17, 19] 
and Child [20], the curves were taken to be straight line extensions of local 
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Fig. 1. Space-fixed axes (x, y, z) 
and body-fixed axes (x", y", z") for 
the entrance channel of the 
reaction AB + C --* A + BC. 
Although the origin of the 
coordinates is at B, it has been 
displaced from that point for the 
sake of clarity in the figure. The 
space-fixed areas are arbitrary. In 
the body-fixed system, the z"-axis 
points from atom B to atom C 
while the y"-axis is normal to the 
reaction plane in the r x R 
direction 

perpendiculars to the reaction curve, ~c. At large curvatures, with energies 
sufficient to appreciably depart from the reaction path, or if tunneling were 
taken into consideration, dynamical calculations in the triple valued regions 
where the local perpendiculars could cross were impossible. 

The "hyper-hyperbolic" coordinates introduced in I were one-to-one over 
the whole space, and thus entirely eliminated this problem. The point trans- 
formation method transforms the coordinates, momenta,  Hamiltonian, and 
wave functions together. The transformation is always orthogonal in the trans- 
formed space, while the momenta  and Hamiltonian are Hermitian. No approxi- 
mations are used; the Hamiltonian is exact. McNut t  and Wyatt  [21] extended 
the method developed in I to the finite mass case. In doing so, they trans- 
formed the differential equation to a form more amenable to computational  
solution. 

In this paper, the extension to the three-dimensional problem of  the infinite 
mass case method developed in I is considered. For  the A - B - C  system, with 
MB = ~ ,  and with the origin of  the coordinate system chosen to be at B, 
the original coordinates, shown in Fig. 1, are (XA,YA, ZA, X o Y o  ZC). An 
initial transformation to the variables (tk, 0, ~k, r, R, z) is performed; here 
(~b, 0, ~O) are the Euler angles, r and R are the interatomic distances rAB 
and rBo respectively, and z is the angle between r and R. A second transfor- 
mation to the variables (~b, 0, ~k, ~, r/, z) where r is the reaction coordinate, and 
~/is the vibrational coordinate of  the diatomic system produces the final result. 
Section 2 is concerned with these transformations. The transformation of  the 
momenta  and Hamiltonian is discussed and compared with the results of  [5] in 
Sect. 3, while Sect. 4 contains concluding remarks. The elements of  the 6 x 6 
matrix of  first derivatives of  the intermediate variables with respect to the 
original variables comprise Appendix A, and the proof  that two successive 
point transformations are equivalent to a single transformation appears in 
Appendix B. 
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2. The  trans format ion  

N. M. Witriol and G. H. Herling 

Consider the infinite central mass A - B - C  reactive collision problem as shown in 
Fig. 1. Following the standard methods, one transforms to a barycentric 
reference frame with the origin on the infinite mass atom B. The space-fixed 
barycentric coordinates are then (XA, YA, ZA, XC, YC, ZC). Applied to the reaction 
path, the point transformation method transforms to a set of coordinates which 
are analytic, form a one-to-one mapping of the space, and have one which 
mimics the actual reaction path as closely as possible. 

An initial transformation is performed to body-fixed coordinates by introduc- 
ing Euler angles of  the A - B - C  system (~b, 0, ~b), the interparticle distances, 
r = rA, and R = rc, and the angle between r and R, z. In order to enable the 
introduction of the helicity representation for a partial wave decomposition of 
the wave function, the first two Euler angle rotations are chosen to orient the 
body-fixed z-axis to point from atom B, the diatom center of infinite mass, to the 
lone atom in each channel. For the incoming channel, as shown in Fig. 1, the 
final z-axis, z", is in the R direction. The final rotation angle, ~,, orients the final 
y-axis, y" ,  in the r x R direction normal to the atom-diatom plane. The Euler 
angles [22] for this transformation are then given by 

and 

t k = tan-  l(yc/Xc ) + or, 

0 = COS-l(xc/R), 

~k = t a n _ l (  ' nzR ~ + f l ,  (2.1) 
\Xcny  - y c n x /  

where R is the B - C  interparticle separation, R = ( x 2 + y 2 + z ~ )  1/2, n is the 
perpendicular to the A - B - C  plane, 

n = r x R,  (2 .2)  

and n = Inl. The quantities ~ and fl are included for computational purposes, and 
are defined as follows: 

= 0, nx, ny >t 0, fl = 0, zcn,  A >1 0 

=2n ,  n x < O ,  /'ty>O, =2n ,  zcn<O,  A > O  

= n; otherwise; = n, otherwise, 

where 

(2.3) 

A = n,:yc - n e X c .  (2.4) 

These Euler angles are channel dependent and therefore lack the appeal of the 
reaction path concept, viz., both the entrance and exit channels are described by 
the same Hamiltonian. Another set of Euler angles wherein the first two 
rotations orient the z-axis in the direction perpendicular to the reaction plane, 
with the third Euler angle orienting the y-axis in the atom-diatom direction may 
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be defined. This set has the advantage that only one angle is channel dependent. 
However, its disadvantage is that one cannot readily separate out the orbital 
angular momentum, l, and the standard wave function decompositions become 
difficult. This orientation has been employed in formulations of the three-body 
problem in terms of hyperspherical coordinates [23, 24], but it leads to difficulties 
in the formulation of coupled-state equations [4b]. 

The other three coordinates, in the infinite mass B case, are taken to be the 
A - B  and the B - C  interparticle distances, r and R respectively, and the angle 
between r and R, z, where 

__l{r* R~  =cos (2.5) 

The goal of the reaction coordinate method is to have one coordinate, ~, 
which, while mimicking the reaction path as closely as possible, smoothly 
proceeds from the reactant to the product region while the other coordinates are 
perpendicular to it. A transformation which achieves this result for the collinear 
problem was developed in I. The collinear transformation transformed the two 
one-dimensional interparticle distances, xa and Xc, into the reaction coordinate, 
r and the vibrational coordinate, q. For the three-dimensional problem, one 
must also consider the angle, ~. For the H2 + F ~ H + HF  reaction, the reaction 
path is collinear [25] and lies in the �9 = n plane. The reaction coordinate is, 
therefore, chosen to be explicitly independent of v. For other cases, the angular 
dependence of the reaction path may be quite complicated, and is generally not 
known analytically. In such cases, for which the potential surface admits of 
reactive pathways for a broad range of z, it is nevertheless convenient to choose 
the reaction coordinate to be independent of z. In particular, the same point 
transformation as in the collinear case is used to transform the interparticle 
distances, r and R, into r and q. From I Eqs. (4.11) and (4.12), the transforma- 
tion is 

= r 4 _ R 4, 

rR  (2.6) 
- r 2 + R 2 q0, 

or more generally, 

r = (bR  + R o )  4 - -  (ar + r0) 4, 

[ (ar + ro)2(bR + Ro) 2 11/2 (2.7) 

for all values of r. 
Thus, from Eqs. (2.1), (2.5) and (2.7), there is a six-dimensional point 

transformation, which provides a one-to-one mapping of the space-fixed coordi- 
nates onto the Euler angles, (~b, 0, ~b), and three reaction coordinates, (~, r/, v) 
which respectively represent translation, vibration, and rotation in both the 
reactant and product channels of this single product reaction. 
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3. The transformed Hamiltonian 

N. M. Witriol and G. H. Herling 

Having given the transformation, the point transformation method [26, 27] may 
be applied to the calculation of the Hamiltonian, and the wave function in the 
transformed space. The method is substantially different from simply perform- 
ing a change of variables. The variables in the transformed space are orthogo- 
nal, the transformed momenta are not simply given by the chain rule, and thus 
the transformed Hamiltonian and wave function are not the same as the 
original Hamiltonian and wave function written in terms of the transformed 
variables. At the end of this section these results will be briefly compared with 
those obtained from the change of variables method, the method wherein the 
chain rule for differentiation is used, and thus one remains in the original 
space. 

The point transformation, given by Eqs. (2.1), (2.5) and (2.7) can be 
compactly written in the form 

q = q(x), (3.1) 

where q = (~b, 0, ~k, ~, i/, z) and x = (XA, YA, ZA, XC, YC, ZC)" The relationship be- 
tween the original momenta Pi (conjugate to xi) and the transformed momenta, 
Pi (conjugate to r/;) is taken to be 

6 

P; = (1/2) ~ [(Otb/dx~)pj +py(Orlj/axi)], (3.2) 
j = l  

where, in the coordinate representation of the original space, 

Pi = ih ~ /axi, (3.3) 

and in the coordinate representation in the transformed space, 

p: = -- ih a /drl./. (3.4) 

From Eqs. (3.3) and (3.4), it is seen that Eq. (3.2) is not the chain rule 
for differentiation. This difference is the reason [26] that the transformed 
variables in the transformed space are orthogonal, with well-defined momenta 
given by Eq. (3.4). The original Hamiltonian, in the infinite mass B case, is 
given by 

6 
H = (1/2) ~ (p2/mi)  + V(x), (3.5) 

i=1 

where x = (XA, YA, ZA, XC, YC, ZC), and mi = mA for i = 1-3 and rnz = mB for 
i = 4 -  6. Proceeding to mass weighted coordinates, 

XA ~ (mA) I/2XA, XC ~ (mc) 1/2Xc, (3.6) 

and similarly for y and z, the original Hamiltonian, given by Eq. (3.5), becomes 
6 

H =(1/2)  ~ P] + V(x). (3.7) 
i = l  
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The transformed Hamiltonian obtained via the standard canonical procedure 
[26] is given by 

H[xOI), P(tl, p)] = (1/2) 

where gU is the effective metric, 
6 

6 

Z Pig~ipj+W(~)+V(~), (3.8) 
i , j =  1 

gU= Z (a,t, lax,~)(a~jlax,~), (3.9) 
k = l  

W01) is the coordinate dependent potential, 
6 

W = (h2/2) ~ B1/Z(O/aq,)g'J(n)(t31Orb)B -'/2, (3.10) 
i , j =  1 

or, in terms of the original coordinates (sometimes a more convenient calcula- 
tion), 

6 

W = -(h2/2) ~ (Ol~xk)(~ -'/2 aBlexk), (3.11) 
k = l  

in which B is the Jacobian of the inverse transformation, 11--* x, 

B = IOqjlOx, I, (3.12) 

and 1I(11) is simply V(x) written in terms of the transformed variables. The 
relationship [26, 27] between the wave function, 7J(x), in the original space, and 
the wave function, 7'(rl), in the transformed space, is 

~(x) = B~/27t(n). (3.13) 

This relationship guarantees [26, 27] that the time-independent Schr6dinger 
equation is of the same form in both the original and transformed spaces. As one 
can readily see, it also guarantees conservation of probability with a weight 
function of one in the transformed space which is consistent with the orthogonal- 
ity of the transformed variables in the transformed space. 

In various guises, Eqs. (3.8) and (3.13) have a venerable history [26-30]. 
Different conventions for the metric have been used, but that of the present work 
is the same as that of [28]. The emphasis of the earlier work [28-30] was 
focussed on the correct transcription of a classical Hamiltonian into a 
SchrSdinger equation with the same coordinates; this is equivalent to the 
transformation of the Laplacian to generalized curvilinear coordinates. The more 
recent work has focussed on the transformation of the quantum mechanical 
coordinates and momenta themselves as the result of a classical canonical point 
transformation. Both approaches lead to exactly the same results provided that 
the Jacobian factors needed for the normalization integral [26-30] are consis- 
tently taken into account. The separation of Eq. (3.8) into a term quadratic in 
the momenta and an induced potential, W, manifests the similarity between the 
classical and quantum mechanical Hamiltonians. The potential W, which arises 
solely as a result of the coordinate transformation, is proportional to h 2 and 
vanishes in the classical limit. 
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The effect of  the transformation, indicated by the subscript 1, from the 
space-fixed coordinates to the body-fixed coordinates I h = (tO, 0, ~k, r, R, z) is first 
considered. In order to obtain the Hamiltonian in the transformed coordinates, 
HI, (given by Eq. (3.8) with W, q, and gO replaced by WI, ql, and g~J, 
respectively it was first necessary to obtain the derivatives, ~hJOXg, of the 
transformation given by Eqs. (2. l) and (2.5). The effective metric coefficients, gO, 
and the coordinate dependent potential WI were then calculated. The algebraic 
manipulations were performed with the symbolic manipulation program SMP 
[31] on a VAX 780/11 computer. The derivatives, C%hJt~x ~ are given in Appendix 
A. Using Eq. (3.9) with ~/ replaced by rh, the independent effective metric 
coefficients g'~, are then found to be 

g~l = (R sin 0)-2, 

gl =0, 
g13 = - ( c o s  0 sin z + cos ~b cos z sin O)(R sin 0 sin z) -2, 

g14 = g15 = 0, 

gl 6 = - s i n  ~p(R 2 sin 0)-1, 

g~2 = R-2,  

g23 = cos z sin ~k(R 2 sin z) -1, 

g124 = g125 = 0, (3 .14)  

g126 = --COS ~ g - 2 ,  

g313 = (r sin z) -2 + (R sin z) -2 + (R sin 0) -2 _ 2R -2 

+ 2 cos ~O cos z cos O(R 2 sin z sin 0) - 1, 

g p  = g ~  = o, 

gl a6 = cos 0 sin ~b(R 2 sin 0)-1, 

gaj=64j , j =4 ,  5,6, 

gS~J=65j, j =  5,6, 

g66 = r -2  + R-2.  

The Jacobian of  the inverse initial transformation, as in Eq. (3.12), is 

B1 = - ( r 2 R  2 sin z sin 0)-1. (3.15) 

Substituting Eqs. (3.14) and (3.15) into Eq. (3.10) yields the induced coordinate 
dependent potential for the initial transformation, 

(2/h 2) W1 (q) = - ( 2r sin z) - 2 _ ( 2 R  sin z) - 2 _ (2R sin 0) - 2 - -  ( 2 r )  - 2 

_ (2R 2) -1 + cos ~b cos z cos O(2R 2 sin z sin 0) -1. (3.1 6) 

Equation (3.8), together with Eqs. (3.11) - (3.14), constitutes the Hamiltonian for 
the initial transformation to body-fixed coordinates. 
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The second transformation, (0, ~b, r, R, ~) ~ (q~, 0, ~k, ~, ?/, T), as given by Eq. 
(2.7) and indicated by the subscript 2, transforms to the reaction coordinates, 
(4, ?/). As with the initial transformation, it is necessary to obtain the derivatives, 
O?/2j/Oxi, of the transformation of Eq. (2.7), and calculate the effective metric gq 
and the coordinate dependent potential, WE. The method for combining two 
successive transformations is given in Appendix B. The effective metric, Eq. 
(B.9), does not contain a subscript because the final form for g is not simply 
additively or multiplicatively related to gl and g2. Because the transformation of  
Eq. (2.7) only involves two of the six coordinates, only a two by two submatrix 
of the derivatives is affected. Setting x = ar + ro and y = bR + Ro, one obtains 

O?/2i/O?/ij = 6ij, i ~ 4, 5; j ~ 4, 5, 

d ? / 2 4 / 8 ? / 1 4  : - -  4ax 3, 

87/24/87/15 = 4by 3, (3.17) 

8?/25/d?/14 = ab 2y 3[(ax ) 2 + (by) 2] 3/2, 

87/25/87/15 = ba2x3[(ax) 2 + (bY)~] 3/2. 

Similarly, only a two by two submatrix of  gV is affected, namely, 

gV = g~J, i , j  ~ 4, 5, 

g44 = 16(aZx 6 + bEy6), 

g45 = g54 = g45 = 0, (3.18) 

g55 = (ab)2(a2x 6 + b2yr)[(ax)2 + (by)Z] -1 

The Jacobian of  the inverse transformation is given by 

B2 = 4ab(a2x 6 + b2y6)(rR) -2[(ax)2 + (by)2] -3/2, (3.19) 

and the final Jacobian is the product of the two Jacobians BI and BE, 

B = B1B 2 = 4ab(a2x 6 + b2y6)(rR) -2(sin 0 sin z)-l[(ax)2 q- (by) 2] -3/2. (3.20) 

The final effective potential is given by 

W = WI --~ W2, (3.21) 

where W1 is given by Eq. (3.16) and apart from the factor h2/2 

W2 = (3/4){(ab)6[(ax)2(28xSy a - 2x 12 + 5Y 12) + (bY)Z(28x#y s + 5x12 - 2Y 12) 

+ aZb4y6(lgaSx 8 + bSy s + 2a2b6x2y 6 + 24a6bZxry 2) + a4bZxr(aSx 8 + lSbSy 8 

+ 24a266xZy6 + 2a6b2xryZ)]}[((ax)2 + (by)2)(ab3y6 + a3bxr)]-2. (3.22) 

Equation (3.8) coupled with Eqs. (3.16), (3.18), (3.21), and (3.22) constitute our 
basic result: the transformed Hamiltonian of  the system. The transformed 
Hamiltonian and the transformed momenta are Hermitian. Both the transformed 
wave function and the transformed Hamiltonian are given in terms of  the 
transformed variables, and are taken in the transformed space. 
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Fig. 2. The Muckerman V [34] potential surface in the H + FH ~ H F  + H channel: a T = 0; 
b "r = n/2;  c z = rr. The last is the projection that  contains the predicted linear transition state for this 
reaction, [38] and the reaction path is indicated by the dashed line 

The reaction H 2 + F --* HF + H has been extensively studied both experimen- 
tally and theoretically [25, 32, 33]. Several potential energy surfaces have been 
proposed for it and employed for classical, semi-classical, and quantum mechan- 
ical analyses. The Muckerman V (M-V) surface [34] has apparently become the 
"surface of choice" for both 1D (one-dimensional) [32] and 3D (three-dimen- 
sional) quantum mechanical calculations for this reaction [7, 35, 36], as well as 
for calculations on HF + H ~ H  + FH with hyperspherical coordinates [37]. 
Consequently, the M-V surface has been chosen for the purpose of illustrating 
these results for this reaction. 

The system approximates the infinite mass central atom B(F) case, and since 
the binding energy of H2, 4.5 eV, is much less than that of HF, 6.4eV, the 
A-C(Hz) channel can approximately be ignored. A plot of this surface in the 
(r, R, ~) subspace, for fixed values of z, is shown in Fig. 2. Figure 2a is a contour 
map of the surface for z = 0. In the convention of the present work, ~ = 0 
corresponds to the approach of one H atom to the other. The repulsive potential 
indicates that this conformation presents a high barrier for reaction. The map for 
r = r~/2 in Fig. 2b suggests that reaction can take place in the perpendicular 
configuration. The H - F - H  collinear arrangement occurs for ~ = rr in the map of 
Fig. 2c. This contains the collinear transition state for the exchange reaction that 
is predicted by the Muckerman V potential surface, [38] and the reaction path is 
shown by the dashed line. 
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Plots of the one-dimensional contours with parameters fitted to the H - F - H  
system, are given in Fig. 3. The solid lines are curves of constant r/, where r /= 0 
corresponds to the best fit to the reaction path, while the dashed curves are 
curves of constant ~. Throughout all space, the (~, t/)-coordinate system remains 
orthogonal. Figure 4 shows how well the reaction coordinate, ~, can be fitted to 
the reaction path ~p, for the Muckerman V potential energy surface in (r, R) 
space. The fit is reasonable in the reaction region, and excellent in the asymptotic 
regions. From the shape of the reaction path, ~p, one would not expect to get an 
excellent fit in the reaction region with a relatively simple analytic function. A 
plot of the reaction path, ~p, in (~, ~/) space is shown in Fig. 5. In their own space, 
the coordinates ~ and r/are rectilinear and orthogonal and the reaction path is 
depicted by the dashed curve. The values are, of course, numerically equal to the 
residuals obtained from the best fit to the path. This figure may also be 
considered as a redrawing of Fig. 4 in the transformed space. 

In Fig. 6, the reaction coordinates in a 3D r-R-z space where z represents the 
rotation are plotted. The dotted circles corresponding to fixed (~, q) illustrate 
rotation. The general nature of the point transformation method [26, 27] is such 
that the transformed variables are orthogonal, and the weight function in the 
volume integral is one. Because the curves shown in Fig. 6 for constant q and z 
are plotted on the orthogonal (r, R)-axes, the figure illustrates the result of a 
change of variables, not a point transformation. Because the point transforma- 
tion gives orthogonal variables, an alternative plot of the (r, R, z) subspace is 
given in Fig. 7. It shows that constant ~ correctly describes vibration in both the 
reactant and product channels. However, inspection of Fig. 2 reveals that the 
plane z = 0 enters a physically inaccessible region of space. This corresponds to 
the fact that atoms A and C cannot be at the same point, i.e., if without mass 
weighting r = R, then ~ cannot be zero. 

The Eulerian transformation, Eq. (2.1), can be utilized within the change of 
variables concept by performing a standard change of variables using the chain 
rule. While this method does not yield Hermitian momenta in the Euler angles, 
etc., it is the standard method currently used. If that method were used, the 
resultant Hamiltonian would not have the coordinate dependent potential, WI. 
The first transformation would yield the Hamiltonian obtained by Schatz and 
Kupperman [5] which can be written in the form 

H= i,j=l ~ {Pig~YPJ +/,=, ~' (~li/~Xk)(~/~li)(~lj/~Xk)~gJ} "~- V(I]I)' (3.23) 

where the g"J's are the effective metric coefficients given by Eq. (3.15), and the 
dlhj/Ox k are given in Appendix B. The second transformation transforms this 
Hamiltonian to 

6 
H = ~ p,g~Jpj + W2 + V(n2)- (3.24) 

i , j= l  

Because this method is more closely related to the standard methodology, it 
might be easier to employ computationally than the formal method previously 
derived. 
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Fig. 3. The (4, ~/) coordinates in any plane z = constant. The solid (dashed) lines are curves of 
constant ~/(r They are orthogonal and single valued at every point 

Fig. 4. The reaction path and the best fit to it are given by the solid and dashed curves, respectively, 
as functions of RH, F" The fit is excellent in the asymptotic regions, and reasonable in the reaction 
region. A value Z 2 = 0.01 was obtained for fitting 174 data points with two parameters 

Fig. 5. The reaction path for the Muckerman V potential plotted in (4, t/) space. The values shown 
are, in fact, the residuals of the fit to the reaction path 

Fig. 6. The (4, q, ~) coordinates in (r, R, v) space. For  clarity, the curves of constant ~ have been 
omitted. The solid lines are values of constant 4, and the angle ~ corresponds to the rotations 
indicated by the dashed lines 
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Fig. 7. Another representation of the three- 
dimensional (r ~/, ~) coordinates in (r, R, z) 
space. The curves of constant ~ have been 
omitted for clarity, and the "z"-axis 
corresponds to the angle z 

The reason that the formal method of performing the transformation from 
space fixed to body fixed is more difficult to implement computationally is that 
it leads to the coordinate dependent potential W1 given by Eq. (3.16). This not 
only contains singularities, but also couples the dynamical variables of the 
problem to the geometric Euler angles. In the usual partial wave decomposition, 
a more complicated set of coupled equations is, therefore, expected. Even if W1 
were eliminated from the problem, rotation in the three-dimensional problem 
leads to additional computational difficulty. Although a convenient l-dependent 
vibrational basis may be easily constructed, and has been for the collinear 
problem [21], rotations present difficulties. The construction of a reaction 
coordinate dependent rotational basis has been performed [7], but it requires 
additional matrix diagonalizations. It appears, therefore, that it is formally 
possible to reduce the three-dimensional problem to a set of coupled ordinary 
differential equations in the reaction coordinate for the translational functions 
similar to that of [21]. Equations of the same form have been derived under the 
more restrictive assumption that the "surface functions" multiplying the transla- 
tional functions are independent of the scattering coordinate [39]. 

4. Conclusions 

In this paper the extension of the reaction coordinate point transformation 
method to the three-dimensional quantum mechanical reactive scattering prob- 
lem has been considered. In Sect. 2, the transformation to the incoming channel 
Euler angles was described. The collinear reaction coordinate transformation was 
appended to the Euler angle transformation, thereby completing the three-dimen- 
sional reaction coordinate transformation. It was found that the point transfor- 
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mation proceeded smoothly, and no procedural or computational difficulties 
were encountered. However because the axes defining the Euler angles are 
different in different channels, the formulation lacks the intuitive appeal of  the 
Polanyi concept wherein a given coordinate represents the same physical variable 
in both the incoming and the outgoing channels. Extensions of this method by 
means of smoothing cutoff functions [40] to manifest this behavior have been 
considered, but they introduce problems in the basis set expansion of  the wave 
function. Nevertheless this technique might bear further investigation. 

For  the current work, the integration techniques in the transition-state 
region may be significantly simpler than those of [5] because the reaction 
coordinates automatically take curvature into account, and thus there is no need 
to introduce arbitrary and changing propagation coordinates. In addition the 
matching appears to be simpler because the vibrational and translational coordi- 
nates are the same across the matching boundary. No approximations pertaining 
to the harmonicity of the potential in certain variables, or to cutoffs to avoid 
triple-valued regions, have been incorporated. The collinear "hyper-hyperbolic" 
reaction coordinate method has thus been extended to the consideration of  three- 
dimensional problems. 

Appendix A 

The derivatives ~thJ~Xi, where ql = (~b, O, ~O, r, R ,  z) and 
x = (XA, XC, YA, YC, ZA, ZC) 

~4~/aXA = O, 

t~c~/Ox c = - sin ~b/(R sin 0), 

~/Oy~ = o ,  

O~b/ayc = cos (a/(R sin 0), 

~ck /OZ A = O, 

~ep/OZc = O, 

~ O / ~ x  A = O, 

~O/~xc = cos 4~ cos O/R, 

O0/t~yA = O, 

00 /dYc = cos 0 sin c~ /R, 

O0/OZ A = O, 

O0/OZc = - sin O/R, 

O~/Ox A = - ( c o s  ~ sin ~b + cos ~b cos 0 sin ~)/(r sin z), 

O~,/OXc = (cos 0 sin ~b sin z + cos ~ cos z sin 4' sin 0 

+ cos ~b cos z cos 0 sin ~ sin O)(R sin z sin O) - 1, 
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aq~lay .  = 

aO l a y c  = 

a O / ~ z .  = 

a r  /aZc = 

Or/Ox  A = 

Or/Oxc = 

dr/OyA = 

Or/Oyc = 

ar/OzA = 

Or/Oz c = 

6~R/Ox A = 

c~R/Oxc = 

OR/Oy A = 

~R/Oy~ = 

O R / O z  a = 

a R / a Z c  = 

O~/Ox.  = 

O~ /OXc = 

Oz/OyA = 

Oz/Oy c = 

OZ/OZA = 

O~ /C3Zc = 

N. M. Witriol and G. H. Herling 

(cos 4) cos ~k - cos 0 sin q~ sin ~k)(r sin 1:) - 1, 

- ( c o s  ~b cos 0 sin z + cos ~b cos @ cos z sin 0 

- cos z cos 0 sin ~b sin ~k sin O)(R sin z sin 0) - l, 

sin ~k sin O/(r sin z), 

- c o s  z sin @ sin O/(R sin z), 

cos 4) cos ~ sin 0 - sin 4) sin ~k sin z + cos 4) cos ~b cos 0 sin z, 

0, 

cos 4) sin ~b sin ~ + cos z sin 4) sin 0 + cos qt cos 0 sin 4) sin T, 

0, 

cos z cos 0 - cos ~b sin z sin 0, 

0, 

0, 

cos 4) sin 0, 

0, 

sin ~b sin 0, 

0, 

COS O, 

[ - c o s  z(sin 4) sin ~k - cos 4) cos ~k cos 0) + cos 4) sin z sin O]/r, 

(sin 4) sin ~k - cos ~b cos @ cos O)/R, 

[cos z(cos 4) sin ~O + cos ~b cos 0 sin ~b) - sin 4) sin z sin O]/r, 

- ( c o s  q~ sin ~k + c o s  ~O cos 0 sin gp)/R, 

- ( c o s  0 sin �9 + cos ff cos �9 sin O)/r, 

cos r sin O/R. 

A p p e n d i x  B 

P r o o f  that two successive transformations x ~ x" and x" ~ x"  
are equivalent to the net transformation x ~ x "  

In this appendix it is proved that  the t ransformed Hamil tonian  obtained f rom 
two successive t ransformat ions  is equivalent to that  obtained f rom the net 
t ransformat ion.  The t ransformat ions  shall be denoted  by the subscript 1 for  the 
first t ransformat ion,  x ~ x ' ,  the subscript 2 for  the second t ransformat ion,  
x ' ~ x " ,  and no subscript for  the total  t ransformat ion,  x ~ x " .  The Einstein 
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summation convention is employed, and the sums extend over all degrees of 
freedom involved in the point transformations. 

In the point transformation method, under two successive point transforma- 
tions, the original Hamiltonian, 

H(x, p) = PiPi + V(x, p), (B. 1) 

is transformed under x --* x' into 

H(x' ,  p')  = Pi (x', p')pi (x', p') + V[x(x'), p(x' ,  p')], (B.2) 

and then under x ' ~  x" into 

H(x",p")  =pi(x" ,p")pi(x" ,p")  + V[x'(x"),p(x",p")]. (B.3) 

Now under the first transformation, x--* x', 

Pi = P~ (Ox) /Oxi) q- (Ox) /t~xi)p;, (B.4) 

which can be rewritten as [26, 27], 

Pi = [Pj -4- (ih/2)(O In Bi/Oxj )](0x;/Oxi) (B.5) 

o r  

p, = (3X'k/OX~)[p'k -- (ih/2)(3 In el/f~X'k) ]. (B.6) 

A similar set of equations, for the second transformation, exists for p; in terms 
of P7 and xT. 

Using Eq. (B.5), and its equivalent equation for the second transformation, 
one obtains 

p, = [p7 + (ih/2)(O In B/Ox[ )](Ox)'/3x~), (B.7) 

where the relation B = BIB2 has been used. Similarly one can show that 

Pi = (Ox'~ IOx, )[pZ - (ih /2)(O In a /~x'D]. (B.8) 

substituting Eqs. (B.7) and (B.8) into Eq. (B.3), and using the Therefore, 
definitions 

and 

one obtains 

g,k = (Ox7 /OXm)(OX~ /OXm) = (OX, /~x; )g~J(OX~ /OX; ) (B.9) 

W(x") = (h 2/2)B 1/2(0 IOx; )[g'J(0B - ":lex; )], (B.10) 

H(x",p")  =p~, gtkp,~ + W(x") + V(x",p"). (B.11) 

While the above is useful, when the individual transformations are actually done, 
one first obtains Wl(x') for x --, x', and then W2(x") for x" ~ x " .  It shall now be 
shown that W(x") is simply equal to the sum of I4/1 and W2. 

From Eq. (B.10), W can be rewritten in the form 

W = -(h2/2)(O/Ox~ )[gfft~ In B/ax'j )] + (h:/4)(~ In B/t~x~)gkt(O In B/Ox~' ), 

(B.12) 
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or expanding using B = BIB 2 and gO = g~, 

W = W E - (h2/2)(O/Ox~ ' )[gO(0 In B1/axj' )] + (h2/4)(0 In B~/t~x,,)(O In B 1/OXm) 

+ (h 2/2)(0 In B1/~3Xm)(O In B2/dXm). (B. 13) 

Substituting Eq. (B.9), into the first term, and using 

(O/t3x~:)(t3x~/OX'k) = 0 In BE/OX'k, (B. 14) 

one obtains 

(OlOx'[)[g~ In B 1/OX] )] = (O/t~X 7 )[g lkt(o In B~ IOx~ )(t3x7 Idx'k)] 

= (0 In B2/Ox'k)g~t(O In B1/Ox~) + (O/OX'k)[gk'(o In B1/Ox,)]. (B.15) 

Substituting this result into Eq. (B.13) and using the form of Eq. (B.12) for the 
first transformation yields the desired result, 

W---- W 1 -.[- W2. (B.16) 
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